from typing import Any
import numpy as np
import pandas as pd
from xgboost import XGBClassifier, XGBRegressor
from .base_selector import FeatureSelector
[docs]
class XGBoostSelector(FeatureSelector):
"""Feature selector using XGBoost feature importance."""
name = "XGBoost"
[docs]
def __init__(self, task: str, num_features_to_select: int, **kwargs: Any) -> None:
"""
Args:
task: ML task ('classification' or 'regression').
num_features_to_select: Number of features to select.
**kwargs: Additional arguments for the XGBoost model.
"""
super().__init__(task, num_features_to_select)
self.kwargs = kwargs
[docs]
def compute_scores(self, X: Any, y: Any) -> np.ndarray:
"""
Computes feature importances using an XGBoost model.
Args:
X: Training samples.
y: Target values.
Returns:
Feature importances from the trained XGBoost model.
Raises:
ValueError: If task is not 'classification' or 'regression'.
"""
model_cls = {"classification": XGBClassifier, "regression": XGBRegressor}.get(
self.task
)
if model_cls is None:
raise ValueError("Task must be 'classification' or 'regression'.")
model = model_cls()
model.fit(X, y)
scores = model.feature_importances_
return scores