from typing import Any
import numpy as np
import pandas as pd
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression
from .base_selector import FeatureSelector
[docs]
class MutualInfoSelector(FeatureSelector):
"""Feature selector using mutual information scores."""
name = "MutualInfo"
[docs]
def __init__(self, task: str, num_features_to_select: int, **kwargs: Any) -> None:
"""
Args:
task: ML task ('classification' or 'regression').
num_features_to_select: Number of features to select.
**kwargs: Additional arguments for mutual information function.
"""
super().__init__(task, num_features_to_select)
self.kwargs = kwargs
[docs]
def compute_scores(self, X: Any, y: Any) -> np.ndarray:
"""
Computes mutual information scores.
Args:
X: Training samples.
y: Target values.
Returns:
Mutual information scores for each feature.
Raises:
ValueError: If task is not 'classification' or 'regression'.
"""
mutual_info_func = {
"classification": mutual_info_classif,
"regression": mutual_info_regression,
}.get(self.task)
if mutual_info_func is None:
raise ValueError("Task must be 'classification' or 'regression'.")
scores = mutual_info_func(X, y)
return scores