Source code for moosefs.feature_selectors.mutual_info_selector

from typing import Any

import numpy as np
import pandas as pd
from sklearn.feature_selection import mutual_info_classif, mutual_info_regression

from .base_selector import FeatureSelector


[docs] class MutualInfoSelector(FeatureSelector): """Feature selector using mutual information scores.""" name = "MutualInfo"
[docs] def __init__(self, task: str, num_features_to_select: int, **kwargs: Any) -> None: """ Args: task: ML task ('classification' or 'regression'). num_features_to_select: Number of features to select. **kwargs: Additional arguments for mutual information function. """ super().__init__(task, num_features_to_select) self.kwargs = kwargs
[docs] def compute_scores(self, X: Any, y: Any) -> np.ndarray: """ Computes mutual information scores. Args: X: Training samples. y: Target values. Returns: Mutual information scores for each feature. Raises: ValueError: If task is not 'classification' or 'regression'. """ mutual_info_func = { "classification": mutual_info_classif, "regression": mutual_info_regression, }.get(self.task) if mutual_info_func is None: raise ValueError("Task must be 'classification' or 'regression'.") scores = mutual_info_func(X, y) return scores