Source code for moosefs.feature_selectors.f_statistic_selector

from typing import Any

import numpy as np
import pandas as pd
from sklearn.feature_selection import f_classif, f_regression

from .base_selector import FeatureSelector


[docs] class FStatisticSelector(FeatureSelector): """Feature selector using F-statistic scores.""" name = "FStatistic"
[docs] def __init__(self, task: str, num_features_to_select: int, **kwargs: Any) -> None: """ Args: task: ML task ('classification' or 'regression'). num_features_to_select: Number of features to select. **kwargs: Additional arguments for the scoring function. """ super().__init__(task, num_features_to_select) self.kwargs = kwargs
[docs] def compute_scores(self, X: Any, y: Any) -> np.ndarray: """ Computes F-statistic scores. Args: X: Training samples. y: Target values. Returns: F-statistic scores for each feature. Raises: ValueError: If task is not 'classification' or 'regression'. """ score_func = {"classification": f_classif, "regression": f_regression}.get( self.task ) if score_func is None: raise ValueError("Task must be 'classification' or 'regression'.") scores, _ = score_func(X, y, **self.kwargs) return scores